CRA & NIS2: Urgent Compliance for Embedded Systems

- The **Cyber Resilience Act (CRA)** and **NIS2 Directive** establish comprehensive cybersecurity requirements for embedded systems with digital elements
- Manufacturers have **36 months** from December 2024 to comply with CRA; NIS2 national laws effective from October 2024
- Embedded ARM64 systems with WiFi/Bluetooth connectivity require **security-by-design** approach to meet compliance
- Non-compliance risks include significant fines, market restrictions, and reputational damage

KEY INSIGHT

Securing U-boot, Linux kernel, and APT package repositories is essential for CRA/NIS2 compliance and must be addressed by 2026

New Regulations Mandate Robust Cybersecurity

CRA Requirements

- Comprehensive security risk assessments
- Secure-by-design development
- Vulnerability monitoring & patching
- Technical documentation

NIS2 Requirements

- Enhanced cybersecurity capabilities
- Risk management measures
- Supply chain security policies
- Incident reporting obligations

KEY INSIGHT

Both regulations hold top management accountable for cybersecurity compliance, elevating security to a board-level concern for embedded system manufacturers

Regulatory developments in cybersecurity

ARM64 Systems Face Unique Security Challenges

Architecture Considerations

- 64-bit architecture with TrustZone for hardware-based isolation
- Memory protection and Execute Never (XN) capabilities must be properly configured

Security Constraints

- Limited resources for comprehensive security implementations
- Long lifecycle requiring extended support and vulnerability management
- WiFi and Bluetooth interfaces significantly expand attack surface

KEY INSIGHT

Embedded ARM64 systems require a layered security approach starting from boot process through kernel to package management

Secure Boot Establishes Trust from Hardware

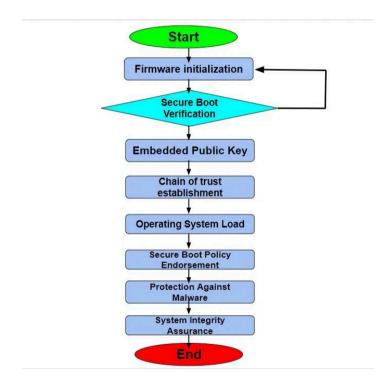
Hardware Root of Trust

Immutable boot ROM code verifies first-stage bootloader using cryptographic signatures

2 Chain of Trust

Each stage verifies the next component before execution, creating an unbroken chain of trusted software

3 Cryptographic Verification

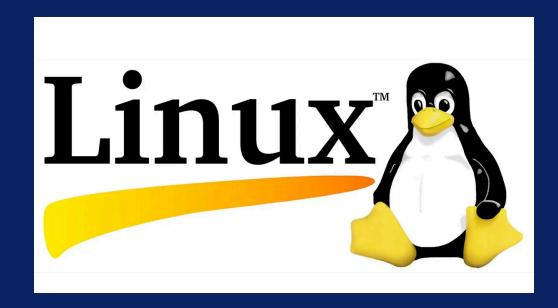

RSA-2048 or stronger signatures with secure key storage in hardware (TPM/HSM)

Protection Mechanisms

Immutable boot firmware, rollback prevention, and debug port protection

KEY INSIGHT

Secure boot is the foundation of CRA/NIS2 compliance, preventing unauthorized code execution and establishing system integrity from power-on


U-Boot Security Hardening

- Secure Boot Implementation:
 - Signed FIT (Flattened Image Tree) images
 - Hardware cryptographic verification
 - Chain of trust establishment
- U-Boot Hardening Techniques:
 - Command whitelisting to reduce attack surface
 - Self-overwriting protection
 - CLI access prevention in production
 - Kernel command-line protection
- **Regular Updates:** Vulnerability monitoring and patching
- CRA Requirement: Consider disabling JTAG interfaces in production

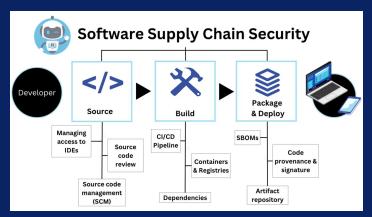
Linux Kernel Hardening

- Memory Protection:
 - Kernel Address Space Layout Randomization (KASLR)
 - Execute Never (XN) bit implementation
 - Memory Tagging Extension (MTE) for ARM64
- Access Control:
 - SELinux/AppArmor Mandatory Access Control
 - Seccomp for syscall filtering
- **⊘** Integrity Protection:
 - dm-verity for root filesystem verification
 - Signed kernel modules enforcement
- **Configuration:** Minimize attack surface by disabling unnecessary features

APT Package Repository Security

Supply Chain Security Risks:

- Package tampering and malicious code injection
- Man-in-the-middle attacks during package downloads
- Dependency confusion attacks


A Key Security Measures:

- Cryptographic signing of packages and repositories
- HTTPS transport for all repository access
- Dedicated private repositories for embedded systems

Regulatory Requirements:

- CRA: Software supply chain security measures
- NIS2: Risk management for critical infrastructure

Certificate and Key Management

GPG Key Management:

- Use RSA 4096-bit or higher for signing keys
- Store private keys in HSMs or smart cards
- Implement regular key rotation (annually)
- Modern APT Security:
 - Avoid deprecated apt-key; use
 - /etc/apt/trusted.gpg.d/
 - Implement keyring isolation for different repositories
 - Use signed-by option in source entries
- Offline Signing: Sign packages on air-gapped systems
- **A** Revocation: Establish clear procedures for compromised keys

Secure Repository Server Configuration

Server Hardening:


- Minimal installation with only necessary services
- Regular security updates and patches
- Network segmentation and firewall rules

Transport Security:

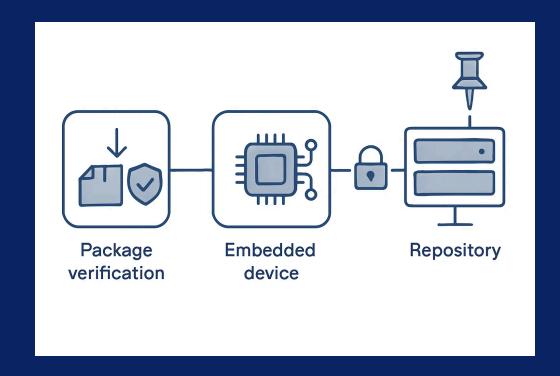
- HTTPS with TLS 1.3 for all repository access
- Strong cipher suites and certificate validation
- Certificate Authority (CA) management

Access Control:

- Multi-factor authentication for administrators
- Role-based access control (RBAC)
- IP-based restrictions for critical operations
- Audit Logging: Comprehensive logging of all repository operations

Client-Side APT Security

Package Verification:


- Always verify package signatures
- Reject unsigned or invalidly signed packages
- Configure APT::Get::AllowUnauthenticated "false"

Transport Security:

- Enforce HTTPS for all repository connections
- Validate TLS certificates properly

APT Pinning:

- Implement pinning to prioritize trusted repositories
 - Prevent package downgrades with
- APT::Get::AllowDowngrade "false"
- Regular Updates: Ensure client systems update trusted keyrings

Compliance Validation and Reporting

Assessment Methodologies:

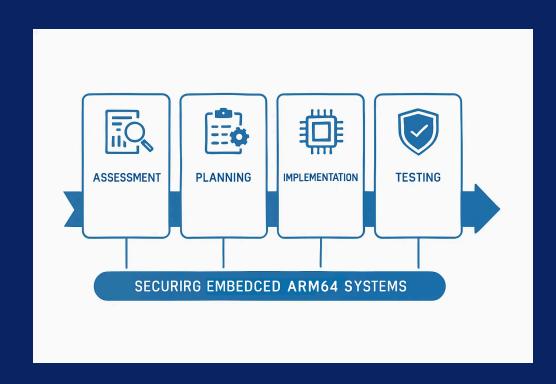
- Security gap analysis against CRA/NIS2 requirements
- Penetration testing of embedded systems
- Vulnerability scanning of firmware and packages

Documentation Requirements:

- Software Bill of Materials (SBOM)
- Risk assessment reports
- Security implementation evidence

Continuous Monitoring:

- Automated security testing in CI/CD pipeline
- Regular compliance audits
- ▲ Incident Response: Required procedures for security incidents


Conclusion and Next Steps

Key Takeaways:

- CRA and NIS2 compliance is mandatory by 2026
- Secure boot and kernel hardening are foundational
- APT repository security is critical for supply chain integrity

Example 1 Implementation Roadmap:

- Conduct security assessment of current systems
- Develop secure boot implementation plan
 - Establish secure APT infrastructure with proper key
- management
- Implement continuous monitoring and compliance validation
- **Timeline:** Begin implementation now to ensure compliance by 2026

